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Summary

Development of methods to accurately estimate HIV incidence rate remains a challenge. Ideally, 

one would follow a random sample of HIV-negative individuals under a longitudinal study design 

and identify incident cases as they arise. Such designs can be prohibitively resource intensive and 

therefore alternative designs may be preferable. We propose such a simple, less resource-intensive 

study design and develop a weighted log likelihood approach which simultaneously accounts for 

selection bias and outcome misclassification error. The design is based on a cross-sectional survey 

which queries individuals’ time since last HIV-negative test, validates their test results with formal 

documentation whenever possible, and tests all persons who do not have documentation of being 

HIV-positive. To gain efficiency, we update the weighted log likelihood function with potentially 

misclassified self-reports from individuals who could not produce documentation of a prior HIV-

negative test and investigate large sample properties of validated sub-sample only versus pooled 

sample estimators through extensive Monte Carlo simulations. We illustrate our method by 

estimating incidence rate for individuals who tested HIV-negative within 1.5 and 5 years prior to 

Botswana Combination Prevention Project enrolment. This paper establishes that accurate 

estimates of HIV incidence rate can be obtained from individuals’ history of testing in a cross-

sectional cohort study design by appropriately accounting for selection bias and misclassification 

error. Moreover, this approach is notably less resource-intensive compared to longitudinal and 

laboratory-based methods.
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1 | INTRODUCTION

Incidence, the rate of new cases of a disease within a specified period of time,1 plays a key 

role in understanding dynamics of an epidemic and in evaluating the impact of public health 

interventions to control its spread. In the case of Human Immunodeficiency Virus (HIV) in 

Sub-Saharan Africa, obtaining reliable incidence estimates poses several challenges 

including a lengthy incubation time resulting in slow accumulation of data, lack of precise 

estimates for incubation period and false recency rates among others.23 A direct approach is 

to estimate HIV incidence rate from longitudinal studies where a representative sample of 

disease free individuals is followed over time and new cases recorded. Incidence rate is then 

computed as the number of persons newly infected with HIV during a specified time period 

to the cumulative person-time at risk of infection.4 However, cohort studies are resource 

intensive, time consuming, and also subject to selection bias if retention is low.5 To avoid 

such problems, certain methods have been developed which estimate incidence rate from 

cross-sectional data. Among these methods are assay-based techniques which look at levels 

and proportions of certain antibodies in the blood sample to show whether the infection was 

recent or has been present for some time. These methods have been justified by maximum 

likelihood criteria and improved by incorporation of past prevalence and false recency rates 

on incidence estimates.6782 Other approaches are based on mathematical models that 

decompose observed changes in prevalence between two sero-surveys into contributions of 

new infections and mortality assuming incidence remains constant between surveys.910 

However, these methods are sensitive to the use of anti retro-viral therapy (ART), hence with 

a global commitment of up-scaling ART to include every HIV-positive individual,11 they are 

bound to misclassifying some incident cases as established ones and vice versa. An 

alternative method is to estimate HIV incidence rate from a cross-sectional cohort study 

design, where selection of subjects is done presently and assessment covers both individuals’ 

present and past experiences.12 This design is less resource intensive as it allows one to 

calculate rates in a one-time survey and according to Hudson et al (2005), it requires 

fundamentally the same assumptions for its validity as other approaches, even though in 

practice certain of these assumptions require particular attention in a cross-sectional cohort 

study. However, there are common threats to the validity of a cross-sectional cohort design, 

these include selection bias and misclassification error which are a result of retrospective 

assessment of study subjects.12 To estimate HIV incidence, we propose a weighted log 

likelihood approach based on a cross-sectional study design, that queries individuals’ time 

since they last tested for HIV, validates the test results with formal documentation whenever 

possible, and tests all persons who do not have documentation of an HIV-positive status. The 

weights correct for differences in key HIV risk factors between persons with and without 

documentation of most recent HIV test. To gain efficiency, we incorporate into the weighted 

log-likelihood available information on error-prone self-reports from individuals who could 

not produce documentation. Our approach addresses two potential problems that arise in the 

cross-sectional cohort study design;

1. Selection bias due to missing documentation: Not all individuals are able to 

produce documentation, and simply assuming that persons with and without 

documentation are unconditionally exchangeable might not be valid, hence 
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inducing selection bias into estimates. We address this by incorporating inverse 

probability of selection weights conditional on available covariates into 

individuals’ log likelihood function. In the absence of model misspecification for 

inverse probability weights (IPW), such estimators are consistent and 

appropriately correct for any bias associated with selection into samples with or 

without HIV test documentation.1314 Properties of such weighted estimators may 

be deduced by viewing them as solutions to a set of estimating equations and 

appealing to the well-established theory of M-estimation.1516 To gain more 

statistical efficiency, we incorporate into the weighted log-likelihood available 

information on error-prone self-reports from individuals who could not produce 

documentation.

2. Misclassification error: There is a notable mismatch between formal 

documentation and self-reported times since last HIV negative test among 

individuals who produced both, suggesting that the latter may be reported with 

error. In the presence of such misclassification error, leveraging information 

available in self-reported times since last HIV negative test without proper 

adjustment for misclassification error will induce bias.17 We account for 

misclassification error by incorporating into our proposed weighted log 

likelihood function an explicit probabilistic model relating self-report records to 

documented dates of last HIV test estimated in the validated sub-sample where 

both are available. We refer to this new approach as a “pooled cross-sectional 

cohort study design”, where the additional term refers to the fact that we are 

augmenting documented dates with self-reports.

To investigate finite sample properties of our weighted estimator, we conduct extensive 

Monte Carlo simulations, and compare our new estimator with other available methods. We 

then use the “Ya Tsie” data (also known as Botswana Combination Prevention Project, or 

BCPP) to estimate HIV incidence rates for 1.5 and 5 years prior to the survey 

simultaneously accounting for selection bias and misclassification error. The rest of the 

paper is organised as follows; In section 2.1, we outline the study design. We introduce 

notations in section 2.2, then list and discuss relevant assumptions in section 2.3. We 

describe the proposed weighted pooled log likelihood estimator in section 2.4 and evaluate 

its performance through extensive simulation studies in section 3. Results of application to 

BCPP data, corresponding conclusions and possible limitations are discussed in sections 3.1 

and 4 respectively.

2 | METHODS

2.1 | Study Design

The methods developed in this paper are largely motivated by the BCPP study, which is a 

pair-matched cluster-randomized trial, funded by the United States of America President’s 

Emergency Plan for AIDS Relief, designed to test whether a package of combination 

prevention interventions reduces population-level cumulative 30-month HIV incidence. The 

trial is being conducted in 30 communities in Botswana (15 matched-pairs) with a total 

population of about 180,000 people, representing nearly 10 % of Botswana’s estimated 
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population. Fifteen communities were randomized to a combination prevention arm and 15 

to a non-intervention arm. Interventions in the combination prevention group include home-

based and mobile HIV testing, and counselling; point-of-care CD4 testing; linkage to care 

support; expanded ART; and enhanced male circumcision services. Detailed BCPP study 

procedures were previously published.18 As part of this study, a random sample of 12,610 

adults in 30 communities throughout Botswana, representing approximately 20 % of their 

respective households was enrolled. HIV status was obtained for 99.7% trial participants at 

enrolment (either through a documented positive HIV status or in-home rapid testing). 

Additionally, self-reported information on prior HIV testing and when available, 

corresponding documentation of self-reported result was also obtained at enrolment. In our 

analysis, these two sources of information; (1) self-reported and (2) documented dates of 

most recent HIV-negative tests were combined to retrospectively construct a cohort of HIV-

negative persons, all of whom underwent HIV testing at enrolment. Participants who 

reported dates of their last HIV negative test in the last 1.5 years (6570 days) prior to BCPP 

enrolment were included in the primary analysis. In secondary analysis, we expanded the 

study population to include all subjects reporting dates of last HIV negative test within the 

prior 5 years (21900 days). We defined incident cases of HIV positivity if a person with a 

previous HIV-negative test result subsequently tested HIV-positive on the date of BCPP 

enrolment. Person-time at-risk of infection was calculated from date of the most recent HIV 

negative test to the date of testing during the BCPP enrolment. Through this, we identified 

6,542 and 6,942 individuals for primary and secondary analyses respectively.

2.2 | Notations

Let Ti denote person i’s time since last HIV negative test until HIV sero-conversion. Also, 

let Fi denote documented time from the last HIV negative test to BCPP enrolment and HIV 

test, hereafter referred to as retrospective follow-up time. We define a constant K = 6570, 

21900 such that the at-risk group is I (Fi ≤ K) and zero otherwise. Let Δi = I Ti ≤ Fi , i.e. if 

person i in the at-risk cohort is found to be HIV positive at enrolment date and Δi = 0
otherwise. Let Y i* be self-reported time since last HIV negative test at enrolment and HIV 

test, available for all subjects who self-report as negative whether or not documentation is 

available. This information is obtained prior to a request for formal documentation of the 

negative HIV test and therefore purely reflects subjects’ recollection. Note also that in an 

attempt to improve accuracy, time of self-report of last HIV negative test was reported in 

terms of time windows spanning at most 1 month (Y i* = 0), between 1 to 5 months (Y i* = 1), 

between 6 to 12 months (Y i* = 2) and more than 12 months (Y i* = 3) prior to BCPP 

enrolment. Let Yi be corresponding discretized version of Fi with J = 0, 1, 2, 3 categories, 

spanning the same time windows as Y i*. Because Y i* may not be equal to Yi, the former may 

be viewed as a misclassified version of the latter. Let Ri = 1 if individual i produced both 

self-report and documentation of last HIV-negative test during the retrospective follow-up 

period of interest, and Ri = 0 denotes an individual with self-reported HIV negative test 

during the at-risk follow-up period without formal documentation. We refer to these persons 

as validated (v) and non-validated (nv) sub-samples throughout. Throughout our analysis, 

we assume that persons who self-report to be HIV positive are in fact positive. We also 
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assume that as in BCPP study, a large set of covariates Xi is measured on all participants at 

enrolment, which are key for explaining selection mechanism into validated sample. 

Throughout, we assume that we observe samples of n independent and identically 

distributed realizations, Zi = Ri, RiFi, Δi, RiY i, Y i*, Xi . Welet PT denote population density 

of Ti, PF be population density of Fi, PYi* ∣ Fi, Δi, Ri, Xi be probability mass function of Y i*

conditional on Fi, Δi, Ri and Xi, πi = PRi ∣ Fi, Δi, Yi*, Xi is the population density of Ri given 

F i, Δi, Y i*, and available covariates Xi.

2.3 | Assumptions

Throughout our analysis, we make the following assumptions;

1. Non-di erential misclassification, i.e., PYi* ∣ Fl, Δi, Ri, Xi = PYi* ∣ Fi.

2. Coarsened misclassification, i.e., PYi* ∣ Fi = PYi* ∣ Yi.

3. Constant hazard rate of infection, i.e.,Ti ~ exponential (λ) where λ is incidence 

parameter of primary interest.

4. Constant hazard of testing times, i.e., Fi ~ exponential(θ).

5. Missing at random (MAR), i.e., Ri ⊥ Fi, Ti ∣ Xi.

Assumption 1 implies that the probability mass function of self-reported information given 

documented date of last HIV negative test, HIV status, selection into validated or non-

validated sub-samples and a set of covariates measured at BCPP enrolment only depends on 

documented date of last HIV negative test. Furthermore, from Assumption 2, this function 

depends on true retrospective follow-up time only through the time interval it belongs to. We 

encode this model as polytomous logistic regression for misclassification error with 

unknown parameters βj * j, j*, j = 0, 1, 2, 3, given by;

cji*ji = Pr Y i* = j* ∣ Y = j = exp βj*j
1 + ∑j′exp βj*j′

(1)

Assumption 3 is reasonable for short enough retrospective follow-up time such as 1.5 years 

and could be relaxed by assuming a piece-wise constant hazard if necessary. It is also 

important to note that Assumption 4 can be replaced by an alternative choice of parametric 

model. Under Assumption 5, we specify a parametric model for the selection process of the 

form;

logit Pr Ri = 1 ∣ Xi = γTXi (2)

We propose to estimate γ with the standard maximum likelihood estimator γ  which 

maximizes the corresponding logistic log-likelihood function based only on data 

Ri, Xi, i = 1, …n.
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2.4 | Weighted log-likelihood function among the at-risk group

Let v = λ, θ, βj*j  and log Li zi; v  denote the log likelihood function for the at-risk group, 

i.e., I Fi ≤ K  under assumptions 1 to 4 and the stronger assumption than Assumption 5, that 

selection into the validated sample is completely at random, i.e., πi = Pr Ri = 1 ∣ Xi = π, a 

constant in (0,1). The corresponding expression Li zi; v  is derived in Appendix 1. A unit’s 

contribution to the corresponding score function for v has two components, 

Si
v ziv; λ , ziv = fi, Δi , and Si

nv zinv; v , zinv = fi, yi*, Δi , for the validated and non-validated 

sub-samples respectively, given by;

Si
v ziv; λ = fi

e−λfi + Δi − 1
1 − e−λfi

(3)

and

Si
nv zinv; v

=
∑j = 0

J cji*ji∫sj
sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−θfi 1 − e−λfi dfi

Δi

−
∑j = 0

J cji*ji∫sj
sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−(λ + θ)fidfi

1 − Δi
(4)

cj*ji is given in (1).

Under assumptions 1 to 4 and the weaker Assumption 5, i.e., selection into the validated 

sub-sample depends only on observed data Xi, we propose to formally account for selection 

bias by incorporating inverse probability weights for selection among the at-risk group to 

obtain the following estimating equation for v, the estimator of v.

∑
i = 1

n
ψ zi; v = 0, (5)

where,

ψ zi; v = Ri
πi

Si
v ziv; λ + 1 − Ri

1 − πi
Si

nv zinv; v , (6)

ψ is equal to ψ evaluated at πi the mle of πi = Pr Ri = 1 ∣ Xi  under model (2).

Note that the un-weighted estimating equation corresponds to (6) under πi = 1
2 . Under that 

scenario, probability of selection into validated or non-validated sub-samples is constant and 

equal for everyone. The variance-covariance matrix of v is then estimated by the standard 

inverse of the observed information matrix. Furthermore, inference based on the Wald, score 

or likelihood ratio statistics may be obtained under standard maximum likelihood theory. 

Because equation (6) is weighted, the estimator of the asymptotic variance-covariance 

matrix of v can be obtained from the non-parametric bootstrap or the sandwich estimator 
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given in Appendix 3. We have also established unbiasedness of the estimating equation (6) 

in Appendix 2.

3 | SIMULATION STUDIES

In order to evaluate the performance of our proposed estimator, we conducted Monte Carlo 

simulations under conditions motivated by BCPP dataset. For all individuals (n = 7000), we 

first generated retrospective follow-up time Fi and time to sero-conversion Ti from 

exponential distributions with parameters 0.3 and 0.2 respectively. As defined earlier, HIV 

statusf at cross-sectional survey was then given as Δi = I Ti ≤ Fi . To have evident selection 

bias such as in BCPP, we simulated covariates dependent on HIV status and time since last 

HIV negative test until HIV sero-conversion as follows; D1i and D2i from Normal (0,4.41) 

and (0,1.44) respectively, then 

X1i = exp 0.1Δi − 0.3Ti D1i + 3Δi + 0.2Ti − 0.3Fi, X2i = exp 0.1Δi − 0.3Ti D2i − Δi − 0.2Ti
− 0.3Fi, X3i = exp 0.1Δi − 0.3Ti D2i + 3Δi + 0.2Ti − 0.3Fi

. To 

construct validated (Ri = 1) and non-validated (Ri = 0) sub-samples comparable to BCPP, we 

simulated a binary variable Ri from Bernoulli expit 0.5X1i + 0.2X2i − X3i . To match BCPP, 

we binned Fi into 4 categories to define Yi, taking values 0 if 

Fi ∈ [0, 0.5],  1 if Fi ∈ (0.5, 2], 2 if Fi ∈ (2, 3] and 3 if Fi ∈ (3, 7]. We excluded all individuals 

with Fi > 7 in order to have a reasonably short period of retrospective follow-up motivated 

by BCPP. To simulate self-reported times since individuals’ last HIV negative test, we 

constructed Y i* according to a multinomial distribution with conditional probabilities shown 

in Table 1.

We performed two types of simulations being un-weighted and weighted analysis. For each 

of them, we compared the validated sample-only versus pooled sample estimators. For un-

weighted analyses, validated sample-only estimator exclusively uses documented, error-free 

individuals’ times since last HIV negative test while the pooled estimator incorporates error-

prone self-reports accounting for misclassification but not for selection. The weighted 

analyses involved adjusting individual’s log-likelihood functions with inverse probability 

weights of selection into validated or non-validated sub-samples given X1i,X2i and X3i in the 

two estimators to account for selection bias. Estimated weights were computed based on the 

MLE of a correctly specified logistic regression model for πi, and solving equation (5). We 

compared our proposed estimator that simultaneously accounts for selection bias and 

misclassification error with the other three estimators that ignore at least one of these 

problems. We conducted 1000 simulations and report Monte Carlo bias, Monte Carlo 

percent bias, Monte Carlo mean square error and relative efficiencies (RE) =
MSEi

MSEwp
, where 

‘wp’ refers to our proposed weighted pooled sample estimator. All computations were 

performed in R version 3.5.1.19

Table 2 shows that as expected, failure to formally account for selection bias when formal 

documentation is missing at random yields biased estimates for HIV incidence rate. This is 

reflected in the large absolute percent bias of about 26 % for the un-weighted validated 

sample-only estimator. Under the same conditions, trying to leverage self-reported dates of 
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individuals’ last HIV negative test increases bias (absolute percent bias = 30 %) due to 

presence of misclassification error. It is evident from the same table that adjusting 

individual’s log likelihood functions by incorporating inverse probability weights of 

selection in the validated sub-sample significantly reduces bias in both validated sample-

only (absolute percent bias = 0.1 %) and pooled sample estimators (absolute percent bias = 

1.2 %). Even though both weighted sample estimators are nearly unbiased, the pooled 

sample estimator is more Efficient as shown by a relative efficiency of 1.5 for the weighted 

validated sample-only estimator. These compelling large sample simulation results suggest 

that incorporating error-prone self-reported information into the weighted log-likelihood 

function and appropriately accounting for misclassification error on the outcome variable as 

we did can lead to substantial efficiency gains.

3.1 | Application to BCPP enrolment data

We used BCPP enrolment data to obtain both un-weighted and weighted estimates of HIV 

incidence rates for individuals reporting negative status in the last 1.5 and 5 years prior to 

this survey using the validated sample-only and pooled sample estimators. Table 4 provides 

basic demographic descriptions of enrolled subjects, stratified by availability of documented 

HIV negative result and time since last documented test as reported in Abuelezam et al.20 

Evidence of misclassification error is shown in Table 5. For weighted analyses, we regressed 

an indicator for presence of documentation on the following covariates (measured at BCPP 

baseline household survey); age, gender, current relationship status, religious a liation, 

education, employment status, income, time spent away from the community, livestock 

owned by the household, number of children in the household, age at first sexual intercourse, 

number of sexual partners during the past 12 months, number of lifetime sexual partners, 

inconsistent condom use, transactional sex, frequency of alcohol use, alcohol use by self/

partner during sex, and self reported time since most recent HIV test and self-reported result 

of most recent HIV test. We incorporated in the selection model 74 two-way interaction 

terms by taking the cross-product of each socio-demographic covariate with each 

behavioural covariate. To build the multivariate logistic regression models required by 

inverse probability weighting, we used a stepwise selection procedure to identify covariates 

from the list of candidate predictors described above. The entry criteria were set to a P < 0.2. 

We also included missing indicators for each selected variable with missing values in the 

final logistic regression model for the weights to maximize the number of cases included in 

the final models and to maintain a constant sample size across analyses.

Table 3 shows estimates of HIV incidence rate per 100 person years at-risk of infection from 

both un-weighted and weighted analyses for validated sample-only versus pooled sample 

estimators. For un-weighted analysis, reported standard errors (SE’s) are estimated from the 

inverse of information matrix while we report non-parametric bootstrap SE’s for all 

weighted estimators. We also report 95% confidence intervals for all four scenarios 

corresponding to primary and secondary analyses. Among individuals who tested HIV 

negative 1.5 years prior to BCPP enrolment, the estimated weighted incidence rate from 

validated only sub-sample was 1.10 per 100 person years at-risk of infection, with estimated 

standard error of 0.33 corresponding to a 95% confidence interval of (0.54,1.82). The 

proposed, pooled weighted estimator for the same period yielded an estimate of 1.27 per 100 
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person years at risk of infection, corresponding non-parametric bootstrap standard error of 

0.08, 95% confidence interval of (1.12,1.42). For 5 year period of retrospective follow-up, 

incidence rate for validated sample-only was estimated to be 1.02 per 100 person years at-

risk of infection, with corresponding standard error of 0.24 yielding a 95% confidence 

interval (0.57,1.50). Our proposed, pooled estimator for this period yielded 1.17 as the 

annual incidence rate per 100 persons exposed to risk, 0.08 as the corresponding non-

parametric bootstrap standard error and 95% confidence interval (1.03,1.32). For weighted 

analyses, we observe that although incorporating self-reports into the analyses and 

additionally accounting for misclassification error yielded slightly larger estimates of HIV 

incidence rate for 1.5 and 5 years prior to BCPP enrolment, non-parametric bootstrap 

standard errors were 76% and 67% smaller than values of validated sample only estimator 

that exclusively accounted for selection bias over respective periods. In un-weighted 

analyses, estimates for incidence rate and standard errors from validated sub-sample only 

(1.35, SE= 0.37) and (1.14, SE=0.24) were not far from their weighted counterparts for the 

two respective periods, (1.10, SE=0.33) & (1.01, SE=0.24). However, the un-weighted 

pooled estimator yielded remarkably larger estimates (8.88, SE= 0.55) & (4.97, SE= 0.30 ) 

versus their weighted counterparts (1.27, SE=0.08) & (1.17, SE=0.08) over the two periods, 

suggesting significant selection bias in un-weighted analysis even after accounting for 

misclassification error.

4 | CONCLUSIONS

We have proposed a resource-Efficient cross-sectional cohort study design, that relies on 

querying individuals’ history of HIV testing and where possible, validating it with formal 

documentation to estimate HIV incidence rate, and testing all persons not known to be HIV-

positive at the cross-sectional visit. We proposed and validated through extensive Monte 

Carlo simulations a corresponding weighted log likelihood estimator for incidence rate 

under this study design and model assumptions. This estimator combines individuals’ self-

reported and documented times since their last HIV-negative test and simultaneously 

accounts for possible selection bias and misclassification error assuming no model 

misspecification. Our estimator is therefore robust to both potential sources of bias in cross-

sectional cohort studies as shown in simulation studies and an application to BCPP 

enrolment data. Our best estimate of HIV incidence rate is largely consistent with figures 

from Botswana Aids Impact Survey, which estimated a crude incidence rate of 1.35 per 100 

person years at-risk of infection, using the Recent Infection Algorithm (RITA)21 and BCPP 

laboratory based which rely on recency assays (Incidence rate= 1.06, 95 % CI= (0.70, 

1.42)), but notably more statistically efficient and less resource intensive. Our confidence 

intervals were 77 % and 71% narrower than estimates of Abuelezam et al,20 who obtained 

inverse probability weighted incidence rates of 0.98 (0.32, 1.65) and 1.01 (0.52, 1.51) per 

100 person years at-risk of infection for 1.5 and 5 years retrospective follow-up periods 

respectively by using validated only samples. Although our estimator is evidently more 

efficient, it has potential threats and limitations. These include non-differential exiting from 

study population over time, i.e., the rate of participant exiting depends on HIV status. 

Common causes may be high mortality and out-migration rates among HIV positive 

individuals. We acknowledge that this scenario may seriously affect our estimator. However, 
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due to Botswana being close to 90–90-90 targets of high ART coverage and viral 

suppression,18 we hope that mortality and migration are not major problems in the BCPP 

baseline data set. Moreover, we expect more countries to commit to the 90–90-90 UNAIDS 

targets in future, this will reduce such HIV related mortality rates, hence reducing the effect 

of this type of differential exiting from the study population.

Another potential limitation is that HIV status and testing may not be independent. That is, 

individuals may go for testing because of the presence of a sero-conversion related illness or 

they have engaged in some form of risk-inducing behaviour, this will result in sampled 

individuals differing systematically with those excluded. As a sensitivity analysis, we 

regressed an indicator variable (Ci=1 for individuals who reported to have tested within k 
years prior to BCPP enrolment, 0 otherwise) on available covariates to account for factors 

associated with HIV testing assuming correct model specification. We then multiplied 

resulting inverse probability of Ci = 1 ∣ Xi with our prior weights based on Ri. This analysis 

additionally accounts for bias related with dependence between HIV testing and different 

variables such as risk inducing behaviours. For the two retrospective follow-up times 

respectively, validated only analysis appears to be robust to these additional potential 

sources of selection bias, i.e., 1.13 (SE=0.33) and 1.00 (SE=0.22), while pooled analyses 

results were more sensitive, increasing point estimates by 37 % and 42 %, i.e., 1.74 

(SE=0.12) and 1.66 (SE=0.11). Results are reported in Table 6.

Our estimator is also sensitive to misspecification of the selection model used to construct 

inverse probability weights. That is, if this model is miss-specified, incidence rate under our 

proposed method will generally be biased.1422 In the future, we hope to develop a doubly 

robust inverse probability weighted estimator to additionally account for possible partial 

model misspecification. We did not formally account for possible clustering effect, however, 

this effect was negligible and will unlikely affect our results. A notable possibility is that 

self-reported time since last HIV test could be dependent on person’s underlying HIV status 

(differential misclassification), i.e. Individuals are saying that they tested negative six 

months ago, but actually know that they are positive. We intend to account for this problem 

by using instrumental variables in future.
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4.1 | Appendix 1;: Derivation of the estimating equation for v^¯ among the 

at-risk group

From sections 2.2 to 2.4, we have n independent and identically distributed realizations 

Zi = Ri, RiFi, Δi, RiY i, Y i*, Xi  of individuals in the at-risk group I Fi ≤ K . Using adopted 

notations, under the Assumptions 1 to 4 and the stronger Assumption 5, that selection into 

the validated sample is completely at random, i.e., individuals’ data likelihood is expressed 

as;

Li = fv Y i* = j* ∣ Y i = j fv Δi ∣ Fi = fi fv Fi = fi
ri (7)

× ∫∀fi
fv Y i* = j* ∣ Y i = j fv Δi ∣ Fi = fi fv Fi = fi dfi

1 − ri
(8)

where;

fv Y i* = j* ∣ Y i = j = Pr Y i* = j* ∣ Y = j = exp βj*j
1 + ∑j′exp βj*j′

= cji*ji, (9)

j = 0, 1, …, J , j* = 0, 1, …, J* and βj * 0 = 0, ∀j.

Among this group, an individual is HIV positive Δi = 1   if they converted before or at 

BCPP enrolment, i.e. I Ti ≤ Fi . Therefore, Pv Δi = 1 ∣ Fi = Pv Ti ≤ Fi ∣ Fi , which is the 

cumulative density function of exponential distribution (λ) according to Assumption 3. 

Hence,

fv Δi = 1 ∣ Fi = fi = ∫
0

fi
λe−λtidti (10)

= 1 − e−λfl, λ > 0; fi ∈ [0, ∞) (11)

So

fv Δi = 0 ∣ Fi = fi = 1 − fv Δi = 1 ∣ Fi = fi (12)

= e−λfi, λ > 0; fi ∈ [0, ∞) (13)

Therefore
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fv Δi ∣ Fi = fi = 1 − e−λfi Δi e−λfi 1 − Δi, λ > 0; Δi = 0, 1; fi ∈ [0, ∞) (14)

From Assumption 4 we have,

fv Fi = fi = θe−θfi, θ > 0; fi ∈ [0, ∞) (15)

and by definition;

∫∀fi
cji*jif

v Δi ∣ Fi = fi fv Fi = fi dfi

= ∑
j = 0

J
cji*ji∫sj

sj + 1
fv Δi ∣ Fi = fi fv Fi = fi dfi,

(16)

Therefore for this group, an individual’s data likelihood is formally expressed as;

Li zi; v = cji*ji 1 − e−λfi Δi e−λfi 1 − Δiθe−θfi
ri

× ∑
j = 0

J
cji*ji∫sj

sj + 1
1 − e−λfi Δi e−λfi 1 − Δiθe−θfidfi

1 − ri
,

(17)

which is proportional to;

1 − e−λfi Δi e−λfi 1 − Δi ri
θ ∑

j = 0

J
cji*ji∫sj

sj + 1
e−θfi − e−(λ + θ)fi Δi e−(λ + θ)fi 1 − Δidfi

1 − ri
, (18)

where v = λ, θ, βj*j . Therefore the un-weighted log-likelihood function is expressed as;

logLi zi; v = ∑
i = 1

n
ri Δilog 1 − e−λfi − λ 1 − Δi fi (19)

+ 1 − ri logθ + log ∑
j = 0

J
cji*ji∫sj

sj + 1
e−θfi − e−(λ + θ)fi Δi e−(λ + θ)fi 1 − Δidfi

(20)

For Δi = 1, the integral in equation (20) becomes;
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∫sj

sj + 1
e−θfi − e−(λ + θ)fi dfi = e−(λ + θ)sj + 1 − e−(λ + θ)sj

λ + θ

− e−θsj + 1 − e−θsj

θ

(21)

For Δi = 0, we have;

∫sj

sj + 1
e−(λ + θ)fidfi = e−(λ + θ)sj − e−(λ + θ)sj + 1

λ + θ (22)

Corresponding score equation for v has two components, Si
v ziv; λ , ziv = fi, Δi , and 

Si
nv zinv; v , zjnv = fi, yi*, Δi , for the validated and non-validated sub-samples respectively, 

given by;

Si
v ziv; λ = fi

e−λfi + Δi − 1
1 − e−λfi

(23)

and

Si
nv zinv; v

=
∑j = 0

J cji*ji∫sj
sj + 1fie−θfi Δi e−λfi 2 − Δi 1 − e−λfi Δi − 1

− 1 − Δi e−λfi 1 − Δi 1 − e−λfi Δi dfi

∑j = 0
J cji*ji∫sj

sj + 1e−θfi 1 − e−λfi Δi e−λfi 1 − Δidfi

,
(24)

which simplifies to

Si
nv zinv; v

=
∑j = 0

J cji*ji∫sj
sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−θfi 1 − e−λfi dfi

Δi

−
∑j = 0

J cji*ji∫sj
sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−(λ + θ)fidfi

1 − Δi
(25)

cji*ji takes the form from equation (9).

Under Assumptions 1 to 4 and weaker Assumption 5, i.e., selection into the validated sub-

sample depends only on observed data Xi, we propose to formally account for selection bias 

in the at-risk group by incorporating inverse probability weights for selection through a 

parametric model of the form;

logit Pr Ri = 1 ∣ Xi = γTXi (26)
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We propose to estimate y with the maximum likelihood estimator f which maximizes the 

corresponding logistic log-likelihood function based only on data Ri, Xi, i = 1, …, n. The 

resulting estimating equation for v, the estimator of v, is given by

∑
i = 1

n
ψ zi; v = 0, (27)

ψ zi; v = Ri
πi

Si
v ziv, λ + 1 − Ri

1 − πi
Si

nv zinv, v , (28)

ψ is equal to ψ evaluated at πi the mle of πi = Pr Ri = 1 ∣ Xi  under model (26).

4.2 | Appendix 2;: Proof that the estimating equation for v^ is unbiased

We show that the estimating equation has mean zero (i.e., unbiased) at the true value of v.

E ψ zi; v = E Ri
πi

Si
v ziv; λ + 1 − Ri

1 − πi
Si

nv zinv; v (29)

= E E Ri
πi

Si
v ziv; λ ∣ Xi, Fi, Δi + E 1 − Ri

1 − πi
Si

nv zinv; v ∣ Xi, Fi, Δi (30)

= E
Si

v ziv; λ
πi

E Ri = 1 ∣ Xi, Fi, Δi +
Si

nv zinv; v
1 − πi

1 − E Ri = 1 ∣ Xi, Fi, Δi (31)

= E
Si

v ziv; λ
πi

πi +
Si

nv zinv; v
1 − πi

1 − πi (32)

= E Si
v ziv; λ + E Si

nv zinv; v (33)

Now,

E Si
v ziv; λ ∣ Fi = fi = ∑

Δi = 0

1
Si

v ziv; λ fv Δi ∣ Fi = fi (34)

= ∑
Δi = 0

1
fi

e−λfi + Δi − 1
1 − e−λfi

1 − e−λfi Δi e−λfi 1 − Δi
(35)
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= fi
e−λfi − 1
1 − e−λfi

e−λfi + fi
e−λfi

1 − e−λfi
1 − e−λfi (36)

= 1
1 − eλfi

−fie−λfi 1 − e−λfi + fie−λfi 1 − e−λfi = 0, (37)

E Si
nv zinv; v ∣ Fi = fi = ∑

Δi = 0

1
Si

nv zinv; v fnv Δi ∣ Fi = fi (38)

= ∑
Δi = 0

1
∑
j = 0

J
cji*ji∫s

sj + 1
e−θfi 1 − e−λfi Δi e−λfi 1 − Δidfi (39)

×
∑j = 0

J cji*ji∫sj
sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−θfi 1 − e−λfi dfi

Δi

−
∑j = 0

J cji*ji∫sj
sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−(λ + θ)fidfi

1 − Δi

(40)

= ∑
j = 0

J
cji*ji∫sj

sj + 1
e−(λ + θ)fidfi −

∑j = 0
J cji*ji∫sj

sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1e−(λ + θ)fidfi
(41)

+ ∑
j = 0

J
cji*ji∫sj

sj + 1
e−θfi − e−(λ + θ)fi dfi

∑j = 0
J cji*ji∫sj

sj + 1fie−(λ + θ)fidfi

∑j = 0
J cji*ji∫sj

sj + 1 e−θfi − e−(λ + θ)fi dfi

(42)

= − ∑
j = 0

J
cji*ji∫sj

sj + 1
fie−(λ + θ)fidfi + ∑

j = 0

J
cji*ji∫sj

sj + 1
fie−(λ + θ)fidfi = 0 (43)

This result shows that the estimating equation is unbiased at the true value ν.

4.3 | Appendix 3;: Asymptotic properties of the weighted estimator v¯^

Suppose that v* = (v, γ), according to theory of M-estimators,15

n v* − v* is AMN(0, Σ), n ∞ (44)

where Σ is a sandwich estimator given by;
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Σ = An ν* −1Bn ν* An ν* −1 T
(45)

An v* = E − ∂
∂ν * T ψ zi; v* (46)

and

Bn v* = E ψ zi; v* ψ zi; v* T
(47)

AMN means “asymptotically multivariate normal.” The asymptotic variance of v* can 

therefore be estimated consistently by;

Σ = − 1
n ∑

i = 1

n ∂
∂v * T ψ zi; v*

−1
1
n ∑

i = 1

n
ψ zi; v* ψ zi; v* T

− 1
n ∑

i = 1

n ∂
∂ν * T ψ zi; v*

−1 T (48)

Abbreviations:

0

HIV Human Immunodeficiency Virus
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TABLE 1

Probabilities assumed for simulating self-reported times since last HIV-negative test conditional on 

documented ones

Y i*

Yi 0 1 2 3

0 0.71 0.27 0.01 0.01

1 0.27 0.79 0.16 0.12

2 0.1 0.12 0.73 0.29

3 0.01 0.01 0.10 0.58

Source: Monte Carlo Simulation.
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TABLE 2

Monte Carlo simulation results for validated sample-only versus pooled sample estimators for un-weighted 

and weighted log likelihood functions in presence of selection bias and misclassification error, n=7000

Un-weighted analysis Weighted analysis

Estimate Validated-only Pooled Validated-only Pooled

Monte Carlo Bias 0.0525 0.0591 0.0001 0.0025

Monte Carlo Percent Bias 26.2362 29.5718 0.0669 1.2454

Monte Carlo Mean square error 0.0028 0.0035 0.00005 0.00003

Relative E ciency 93.5667 117.7333 1.5333 1

Source: Monte Carlo Simulation Results.

Stat Med. Author manuscript; available in PMC 2021 October 30.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Molebatsi et al. Page 20

TABLE 3

Un-weighted and weighted estimates of HIV incident rates per 100 person-years at-risk, standard errors and 95 

% confidence intervals for HIV-negative individuals in 1.5 and 5 years prior to BCPP enrolment data.

Un-weighted analysis Weighted analysis

Estimate Validated only Pooled Validated only Pooled

1.5 years prior to BCPP enrolment

Incidence Rate 1.3509 8.8753 1.1021 1.2665

Standard Error 0.3747 0.5526 0.3310 0.0790

95 % lower limit 0.6166 7.7922 0.5400 1.1220

95 % upper limit 2.0853 9.9583 1.8150 1.4220

5 years prior to BCPP enrolment

Incidence Rate 1.1410 4.9690 1.0189 1.1671

Standard Error 0.2379 0.3014 0.2370 0.0790

95 % lower limit 0.6747 4.3782 0.5690 1.0260

95 % upper limit 1.6073 5.5597 1.5020 1.3170

Source: BCPP enrolment. Standard errors reported for weighted analyses are from bootstrap samples with replacement.
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TABLE 4

Baseline characteristics of N=7221 participants with HIV negative test result prior to in-home HIV testing 

during the BCPP enrolment survey, overall and according to availability of accompanying test documentation 

and time since last documented test, Botswana, 2013–2015.

Availability of documented HIV negative result

Characteristic Overall (N=7221) SR (N=4740)1 Documented (N=2378)2 Documented (N=1967)3

Age at the BHS (n=7221)

16 to 24 years 1945 (27) 1282 (27) 659 (28) 584 (30)

25 to 34 years 2474 (34) 1631 (34) 821 (35) 698 (35)

35 to 44 years 1124 (16) 718 (15) 394 (17) 323 (16)

45 to 54 years 881 (12) 556 (12) 303 (13) 225 (11)

5 to 64 years 797 (11) 553 (12) 201 (8) 139 (7)

Female (n=7221) 4664 (65) 2967 (63) 1626 (68) 1361 (69)

Pregnant at BHS4 (n=3681) 215 (6) 60 (3) 154 (12) 151 (13)

Education (n=7183)

Primary or less 1799 (25) 1173 (25) 565 (24) 430 (22)

Junior secondary 2538 (35) 1670 (35) 845 (36) 706 (36)

Senior secondary 1401 (19) 924 (19) 475 (20) 416 (21)

Higher than senior secondary 1445 (20) 947 (20) 482 (20) 408 (21)

Income per month (n=7168)

None 3709 (52) 2396 (51) 1252 (53) 1030 (53)

Less than $ 96 1183 (17) 776 (17) 386 (16) 336 (17)

$ 96 to $ 477 1645 (23) 1074 (23) 557 (24) 449 (23)

More than $ 477 631 (9) 452 (10) 172 (7) 144 (7)

Nights spent outside the community, past year 
(n=7204)

0 nights 3016 (42) 1904 (40) 1059 (45) 870 (44)

1 to 6 weeks 1565 (22) 1053 (22) 489 (21) 385 (20)

1 to 2 weeks 699 (10) 474 (10) 214 (9) 179 (9)

3 weeks to less than 1 month 795 (11) 569 (12) 223 (9) 194 (10)

1 to 3 months 806 (11) 529 (11) 269 (11) 231 (12)

More than 4 months 323 (4) 201 (4) 118 (5) 105 (5)

Self-reported timing of most recent negative 
HIV test (n=7072)

In the last month 378 (5) 100 (2) 277 (12)

1 to 5 months ago 1337 (19) 649 (14) 683 (29) 680 (35)

6 to 12 months ago 1978 (28) 1262 (27) 712 (30) 676 (34)

More than 12 months ago 3379 (48) 2595 (56) 695 (29) 331 (17)

Age at first sexual intercourse5 (n=6145)
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Availability of documented HIV negative result

Characteristic Overall (N=7221) SR (N=4740)1 Documented (N=2378)2 Documented (N=1967)3

10 to 14 years 138 (2) 89 (2) 49 (2) 44 (3)

15 to 17 years 1673 (27) 1105 (28) 548 (26) 458 (26)

18 to 21 years 3559 (58) 2278 (57) 1226 (58) 1025 (58)

22 years or older 781 (13) 490 (12) 283 (13) 229 (13)

Inconsistent condom use, past year6 (n=5653) 3603 (64) 2366 (64) 1197 (63) 1010 (63)

Transactional sex, past year6 (n=5803) 342 (6) 181 (5) 158 (8) 135 (8)

Source: BCPP enrolment data.

1
Self Reported without documentation.

2
Documented within 5 years.

3
Documented within 1.5 years.

4
Proportions calculated among female participants.

5
Proportions calculated among persons reporting any lifetime sexual activity.

6
Proportions calculated among persons reporting one or more sexual partners during the past years.
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TABLE 5

Evidence of misclassification error on BCPP dataset in months

Self-reported times (Y i*)

Documented times (Yi) Less than 1 month 1 to 5 months 5 to 12 months more than 12 months

Less than 1 month 194 56 5 4

1 to 5 months 75 535 106 39

5 to 12 months 3 80 487 96

more than 12 months 3 9 78 192

Source: BCPP enrolment data.
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TABLE 6

Sensitivity analysis results

Weighted sensitivity analysis

Estimate Validated only Pooled

1.5 years prior to BCPP enrolment

Incidence Rate 1.1322 1.7358

Standard Error 0.3304 0.1234

95 % lower limit 0.4980 0.1234

95 % upper limit 1.8110 1.9890

5 years prior to BCPP enrolment

Incidence Rate 0.9974 1.6554

Standard Error 0.2226 0.1107

95 % lower limit 0.6029 1.4460

95 % upper limit 1.4535 1.8790

Source: BCPP enrolment. Standard errors reported for weighted sensitivity analyses are from bootstrap samples with replacement.
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